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Abstract

Analytical models of structural systems allow for exceptional, singular geometric con®gurations, characterized by

rank de®ciency of the equilibrium and kinematic matrix. The feasibility of physical and numerical realization of
such con®gurations depends on the type of singularity±generic vs. nongeneric. It turns out that some interesting,
theoretically predicted and thoroughly studied, types of singular con®gurations (systems with simultaneous statical

and kinematic indeterminacy; unprestressable ®rst-order mechanisms; all higher-order mechanisms; singular
con®gurations of ®nite mechanisms; and kinematically mobile closed polyhedral surfaces) are nongeneric, hence,
physically unrealizable and noncomputable (except for exact or symbolic calculation). Thus, in spite of their
sometimes remarkable theoretical features, these systems and con®gurations are just purely formal constructs.

Moreover, their attempted implementation would produce a generic prototype with `essentially' di�erent properties,
including structural response. A few of the somewhat unexpected implications of this observation are discussed and
a complete set of analytical criteria for the four statical-kinematic types of realizable structural systems is

presented. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

For the purpose of statical-kinematic analysis, a structural system is considered as an assembly of
perfectly rigid components linked by ideal positional constraints. There exist four, and only four,
statical-kinematic types of systems Ð two ordinary (geometrically invariant and variant), and two
singular (quasi-invariant and quasi-variant). The necessary and su�cient analytical criteria for each type
of system stem from the pertinent set of simultaneous constraint equations,

F i�X1, � � � ,Xn, � � � ,XN;Ci � � 0, i � 1,2, � � � ,C: �1�
The C constraint functions F i relate the N generalized coordinates, Xn, to the geometric parameters,

Ci, of the system (e.g., known linear and angular sizes of the structural members). At least one solution
to the constraint equations, Xn � X 0

n, is assumed to be known and is taken as the reference geometric
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con®guration. Further investigation requires expanding the functions F i into power series at the solution
point Xn � X 0

n:

F i
nxn � �1=2!�F i

mnxmxn � � � � � 0, m,n � 1,2, � � � ,N: �2�
Here xn are in®nitesimal increments of the respective coordinates (that is, virtual displacements of the

system) and a repeated index denotes summation over the indicated range.
Consider the linearized constraint equations,

F i
nxn � 0, F i

n � @F i=@Xnj0, �3�
whose matrix is the constraint function Jacobian matrix at X 0

n: The matrix rank being r = N is a
necessary and su�cient criterion of a geometrically stable (invariant) system; according to (3), its virtual
displacements and, the more so, kinematic displacements are zero. A system with r < N is
underconstrained. If, in addition, r < C, the underconstrained system is in a singular geometric
con®guration where it is statically indeterminate to the degree S = (Cÿr ); here and below, the statically
possible self-stress is assumed comprehensive (comprising all structural members).

At r < N Eq. (3) can be solved in terms of properly selected V=(Nÿr ) virtual displacements chosen
as independent; each of them de®nes an independent virtual displacement mode. The existence of V
nontrivial solutions to Eq. (3) indicates V-th degree of virtual indeterminacy of the system and its
in®nitesimal mobility. The latter is necessary and, almost always, su�cient for kinematic indeterminacy,
i.e., ®nite mobility. Kinematic displacements are nontrivial solutions of the nonlinear constraint Eqs. (1)
or (2); the number of such solutions, K R V, is the degree of kinematic indeterminacy of the system. In
contrast to K, which is a global parameter of the system, the degrees of virtual, V, and statical, S,
indeterminacies are local, characterizing only a given geometric con®guration of the system, but not the
system itself.

It may happen that, in spite of V > 0, the given solution Xn � X 0
n is an isolated point in the

con®guration space, so that V > K =0. Then the system is only virtually mobile but kinematically
immobile (rigid) and has a unique geometric con®guration. Such exceptional underconstrained systems
are singular and belong to one of the two existing degenerate types Ð quasi-invariant if topologically
adequate, with the rank r< rmax = N, and quasi-variant if topologically inadequate, with r< rmax <N
(rmax is the maximum rank of the Jacobian matrix attained in the process of constraint variations, e.g.,
bar length changes). Both types lack kinematic mobility, yet admit in®nitesimal ®rst-order displacements
at the expense of second- or higher-order elongations of structural members. De®ning and, even more
so, evaluating the order of in®nitesimal mobility proved controversial (Tarnai, 1989; Kuznetsov, 1991;
Connelly and Servatius, 1994).

A general method for evaluating the order of in®nitesimal mobility has been suggested by Koiter (see
Tarnai, 1989). Although the problem is purely geometric, the method takes advantage of the nonlinear
theory of elastic stability. Indeed, stability implies resistance to perturbations; in the absence of external
loads and initial member forces, the elastic resistance of structural members is the only possible
restoring factor in the model. Thus, elastic stability rules out kinematic displacements (they do not
produce any strains), assuring kinematic immobility of the system. The close relation between the issue
of in®nitesimal mobility and the theory of elastic stability explains the lack of general, necessary and
su�cient, analytical criteria and algorithms in both areas.

The results obtained for structural systems with bilateral constraints (typically, bars), have been
extended to systems involving unilateral constraints (Kuznetsov, 1972, 1991). Such a system is modelled
as an assembly of bars, wires and struts, with inequalities replacing equations as constraint conditions
for the latter two types of structural members. The Minkowski±Farkas theorem from the theory of
linear inequalities in conjunction with the concept of prestressability (the possibility of a stable self-
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stress) play a pivotal role in the statical-kinematic analysis of these systems. A concise mathematical com-
pendium of the current state of the art has been presented recently by Connelly and Whiteley (1996).

This paper deals with physical and numerical realization of underconstrained structural systems as
well as all systems involving unilateral constraints. Only the so-called generic systems and con®gurations
are realizable, both numerically and physically, and can be constructed as real, material systems. (In
what follows, the term real is taken to mean realizable). On the other hand, for reasons discussed in the
next section, nongeneric systems and con®gurations are unrealizable and noncomputable; they represent
purely formal, theoretical constructs. Realizability of a model sometimes has unexpected theoretical and
practical implications. For example, analytical criteria for each of the four possible statical-kinematic
types of real systems are not only di�erent from, but, surprisingly, are simpler than, the current criteria,
oblivious to the notion of realizability. A complete set of necessary and su�cient analytical criteria for
the four types of real systems is presented below, along with a few of their somewhat unexpected
consequences.

The determinative quali®cation of an analytical model as generic or nongeneric is based on the
fundamental mathematical concept of structural stability.

2. Structural stability and statical-kinematic analysis

Structural stability (no relation to structures or mechanics) is a mathematical concept introduced by
Andronov and Pontriagin (1937). It stems from the fact that the exact values of parameters of a real
system can never be known. Therefore, a basic requirement of any physically meaningful analytical
model must be that minute changes in the nominal values of the parameters, as a rule, do not produce
any abrupt, `essential', change in the system behavior. Models satisfying this requirement are called
structurally stable; only such models can be meaningful, realizable, and observable as physical
phenomena and systems.

A mathematical formulation of the concept reads (see, e.g., Jackson, 1989):
A system of equations (a model) is structurally stable if any su�ciently small change in the model

parameters does not result in an `essential' change in the solutions of the system.
The concept of structural stability underlies an associated notion of computability, known as the

Fredkin postulate:
`There is a one-to-one mapping between what is possible in the real world, and what is theoretically

possible in the digital simulation world', and the corollary `That which cannot, in principle, be simulated
on a computer, cannot be part of physics.'

The link between computability and structural stability is in that the unavoidably ®nite precision of
computing and, especially, of input data amounts to small perturbations of system parameters. Only for
a structurally stable system this does not result in an `essential' change in the solutions, thus making
meaningful computing feasible. In short, structural stability is a prerequisite to both physical and
numerical realizability of any model.

Implementing the concept of structural stability requires de®ning an `essential' change in the system.
Taking a clue from nonlinear dynamics, it has been proposed (Kuznetsov, 1999) to employ for this
purpose a notion of virtual modal equivalence (topological equivalence of virtual displacement modes in
the adjacent con®gurations being compared). Thus, the criterion of structural stability is virtual modal
equivalence of the original and slightly perturbed geometric con®gurations of the system. According to
this criterion, the two ordinary (nonsingular) statical-kinematic types of systems, invariant (r=N ) and
variant (N > r=C ), are structurally stable. For the purpose of this discussion, the terms `structurally
stable' and `generic' are equivalent; the latter term is de®ned and used in the context of framework
rigidity in (Graver et al., 1993).

Singular geometric con®gurations are de®ned as those with rank-de®cient Jacobian (and equilibrium)
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matrix,

N > r < C �4�

This condition de®nes singular con®gurations both of kinematically immobile, i.e., quasi-invariant and
quasi-variant systems (V > K =0) and of kinematically mobile, variant systems (V > K > 0), like a
three-bar mechanism in a dead-center position. It turned out that all these con®gurations are
structurally unstable, hence, nongeneric: adjacent nonsingular con®gurations (r=C ) have topologically
di�erent virtual displacement modes as well as a di�erent number, V=Nÿr, of such modes. This
`essential' change in the system properties is produced by a small constraint variation, including, if
feasible, a trivial variation, i.e., one associated with a kinematic (inextensional) motion. Thus, all
singular con®gurations must be physically unrealizable and, moreover, noncomputable. This is, indeed,
the case, with just one additional stipulation regarding elastic behavior of certain quasi-invariant and
quasi-variant systems.

Some, but not all, of these systems are prestressable, that is, capable of admitting prestress (a state of
stable self-stress). In a real system, prestress produces elastic strains which can be accounted for by
retracting the above idealization of the system material as perfectly rigid. The state space of the system
is expanded to include parameters pertinent to elastic behavior. Within the expanded state space,
structural stability (the absence of `essential' changes in the system under small perturbations) is
equivalent to elastic stability (resistance to small perturbations). Prestress and associated elastic strains
override unavoidable geometric imperfections; in fact, the resulting singular con®guration is engendered
by statics, not by the infeasible exact geometry. Thus, prestress of ®nite magnitude entails structural
stability; hence, prestressed singular systems (both quasi-invariant and quasi-variant) are structurally
stable. Of course, this stability is only local, con®ned to a ®nite vicinity of the reference state and
dependent on the prestress magnitude; su�ciently large perturbations (say, thermal expansions or
support settlements) may overcome elastic strains and produce `essential' changes in the system
con®guration or behavior.

The above example of a system structurally unstable within a given state space but stable within an
expanded space, is quite typical. A homogeneous rigid sphere on a rigid plane, as any system in neutral
equilibrium, is structurally unstable; accounting for the material inhomogeneity or elastic properties
makes it (locally) stable. A pencil standing on its sharpened end can be stabilized dynamically and
becomes structurally stable within the appropriately expanded state space.

As to unprestressed and, the more so, unprestressable singular con®gurations of structural systems, all
of them are structurally unstable. If realization (either physical or numerical) of such a con®guration is
attempted, the obtained real system reverts to a pertinent generic, structurally stable type. The latter is
determined by relations among the numbers N and C (the topological attributes of the system) and the
fully restored Jacobian matrix rank, rmax (the geometric attribute of an adjacent nonsingular
con®guration). In particular, theoretical systems with simultaneous global statical and kinematic
indeterminacy (singular ®nite mechanisms), upon realization become either geometrically invariant or, if
prestressed, quasi-invariant. Systems with higher-than-®rst order in®nitesimal mobility in reality revert
to one of the two ordinary types or, if prestressed, to the related generically singular type, but only with
®rst-order mobility.

The concept of structural stability is even more important in the analysis of systems involving
unilateral constraints (wires and struts). The fact is that mobility of systems with unilateral constraints is
controlled by constraint counteraction. This is expressed analytically by a constraint inequality that
negates the feasible domain of the con®guration space determined by all of the remaining simultaneous
constraint equations and inequalities. An analytical criterion of such a counteracting linear inequality is
obtained by reversing the Minkowski-Farkas criterion for a consequence inequality. Applying this
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criterion requires knowing the current e�ective model of the system, speci®cally, the state (engaged or
disengaged) of each unilateral constraint; indeed, only engaged unilateral constraints can develop
internal forces, whereas disengaged constraints are force-free, making their presence irrelevant for the
current (local) e�ective model.

However, engagement of a unilateral (R) constraint means satisfying the boundary equality and is
structurally unstable: a small geometric imperfection causes disengagement and `essential' changes in the
system response. The only way to attain structural stability is to ensure constraint engagement by
statical means, which, in the absence of external loads, amount to prestressing. This is in line with the
above argument concerning prestress and elastic strain as a condition for structural stability of quasi-
invariant and quasi-variant systems. Furthermore, for systems with unilateral constraints, this argument
applies to geometrically invariant systems as well, since the required constraint counteraction presumes
their engagement. Hence, a real system with unilateral constraints can be invariant only if prestressed.
In fact, all three kinematically immobile types of real systems with unilateral constraints must be
prestressed and, vice versa, a prestressed system with unilateral constraints is kinematically immobile
and is a tensegrity system (Kuznetsov, 1991).

This conclusion resonates with the following description given by Buckminster Fuller (1980), a college
dropout who declared `intuition being the key to thinking': `The tensegrity mast demonstrates the use of
tension and compression within the same structure,... Ð discontinuous compression/continuous tension
Ð illustrating tensional integrity or tensegrity.'

This original description of tensegrity (with integrity implying rigidity, or uniqueness of geometric
con®guration) is meaningful and illuminating. In contrast, the common mathematical usage of this
borrowed term, de®ning a tensegrity framework as any assembly of bars, wires and struts (even one
without tension or integrity!), is not only counterintuitive, but outright misleading.

3. Necessary and su�cient analytical criteria for the four types of real structural systems

The necessary and su�cient analytical criterion of a geometrically invariant system with bilateral
constraints is a full rank of the constraint Jacobian matrix, r = N; such a system is structurally stable,
that is, insensitive to su�ciently small variations in member shapes and sizes. For a system involving
unilateral constraints, the existing criterion of geometric invariance is based on Minkowski±Farkas
theorem. It veri®es constraint counteraction within the linearized set of constraint inequalities, thus
reducing the con®guration space to a single point. In statical terms, this condition requires statical
indeterminacy and prestressability. To adapt the existing analytical criterion to real systems, recall that
prestressability alone is not enough; actual prestress of ®nite magnitude must be present to render the
con®guration structurally stable and generic.

Analytical criteria for in®nitesimally mobile systems, both quasi-invariant and quasi-variant, are more
intricate. In terms of constraint equations (1), the necessary and su�cient criterion for a system with
only in®nitesimal mobility (an in®nitesimal mechanism) involves two requirements:

1. The rank of the constraint Jacobian matrix is r<N (at r = N the system is invariant); and
2. The given solution of constraint equations is an isolated point in the con®guration space.

There are no general analytical means verifying whether or not the second requirement is met. The
above mentioned idea of Koiter just shifts the challenge onto the theory of elastic stability, but the latter
also lacks universal means for stability check. As a result, little progress has been made since the
following particular condition was formulated by KoÈ tter (1912).

Without external loads, equilibrium equations in unknown constraint reactions, Li, are
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F i
nLi � 0 �5�

For a system in a singular con®guration, r < C, homogeneous Eqs. (5) admit S = (C ÿr )
independent nontrivial solutions Lik (k= 1, 2,..., S ), each representing a statically possible state of self-
stress. S r 0 is the degree of statical indeterminacy of the con®guration; a statically determinate
con®guration is nonsingular and belongs to one of the two ordinary typesÐgeometrically invariant (at r
= N ) or variant (at r<N ).

Multiplying the expanded constraint Eqs. (2) by Lik yields

�F i
nxn � �1=2!�F i

mnxmxn � � � ��Lik � 0, k � 1,2, � � � ,S: �6�

On multiplying out, the ®rst product vanishes by virtue of (5), leaving in the left hand side the sum of
S polynomials whose leading terms are quadratic forms in xn. KoÈ tter's second-order analysis involves
establishing the existence (or otherwise) of a nontrivial set of displacements xn that, besides satisfying
linearized Eq. (3), also turns into zero all of the S quadratic forms; inexistence of such a set is a
necessary and su�cient criterion of a ®rst-order in®nitesimal mechanism. An example of this analysis
can be found in (Kuznetsov, 1993).

There are two problems with this analysis. First, it may be inconclusive, indicating either higher-order
in®nitesimal, or ®nite mobility; distinguishing between the two requires higher-order analysis. Second,
only in the simplest case of S = 1, prestressability (or otherwise) of the system is obvious; it follows
from sign de®niteness of the only quadratic form present. Bringing into consideration the concept of
structural stability changes the situation completely and favorably.

First, recall that all theoretical systems (including prestressable ones) with higher-than-®rst order of
in®nitesimal mobility in reality either turn into the respective ordinary type or, if prestressed, possess
only ®rst-order mobility. Hence, in the context of real systems, second-order analysis is conclusive and
higher-order analysis is not necessary. Second, prestressability, the decisive issue of second-order
analysis, lends itself to a straightforward resolution: a necessary and su�cient condition for
prestressability is the existence of a set of constraint reactions Lik producing a sign-de®nite combination
of the S quadratic forms in (6), subject to relations (3). This is, in fact, the condition originally proposed
by Calladine and Pellegrino (1991) for ®rst-order in®nitesimal mechanisms; it was later re®ned
(Calladine and Pellegrino, 1992) to accommodate systems not admitting a sign-de®nite combination of
quadratic forms, yet kinematically immobile. Such a system is characterized by the absence of a
displacement set xn satisfying relations (3) and simultaneously turning into zero all S quadratic forms in
(6). Although such systems [unprestressable in®nitesimal mechanisms; Fig. 3 in (Kuznetsov, 1993)] exist,
they are nongeneric and unrealizable. Thus, the existence of a sign-de®nite combination of the S
quadratic forms is the analytical criterion for real systems with ®rst-order mobility.

Turning to quasi-invariant and quasi-variant systems with unilateral constraints, note that their
existing analytical criteria require only prestressability, necessary for constraint counteraction. In real
systems, actual prestress must be present to ensure constraint engagement.

Finally, the necessary and su�cient criterion for a real geometrically variant system with bilateral
constraints is

r � C < N: �7�

In mathematical terms, real variant systems must be quali®ed as structurally stable and, in the
absence of elastic strains induced by external loads, do not admit singular con®gurations at all. Singular
con®gurations (r < C ) are either prestressed, and then quasi-variant; or nongeneric and unrealizable,
regardless of whether they formally possess or lack kinematic mobility.

For a real variant system involving unilateral constraints, the following observation holds true: an
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unprestressed system that includes a wire or a strut and is not geometrically invariant on the account of
bars alone, is variant.

In summary, the di�erence between the presented criteria for real structural systems and the existing
formal criteria stems from the distinction between prestressability and prestress. Prestress is su�cient for
kinematic immobility of any real system and is also necessary for quasi-invariant and quasi-variant
systems, as well as for invariant systems with unilateral constraints. Prestress overrides geometric
imperfections, such as lack of precision in the member sizes, thermal distortions, etc. With prestress, the
con®guration singularity is engendered not by the infeasible exact geometry, but by statics, thus
producing a singular con®guration somewhat di�erent from the nominal one. The ®nite elastic strain
induced by prestress makes the singularity structurally stable, i.e., generic (at least, locally).

In the mathematical literature (e.g., Connelly and Whiteley, 1996) the term `prestress stability' is
consistently employed. Prestress usually means a stress induced prior to loading, so that its very
existence already implies stability. In contrast, self-stress is only a formal, statically possible, self-
equilibrated stress state (a solution to the homogeneous equilibrium equations). Self-stress can be proper
or improper for the unilateral constraints, and proper self-stress, in turn, can be stable or unstable. Only
proper and stable self-stress is physically realizable as prestress. Thus, self-stress stability entails
`prestressability', i.e., the ability of the system to acquire prestress. The term `prestress stability' also
obscures the distinction between mere prestressability and the actual presence of prestress. This subtle
distinction is crucial in the analysis of real systems, due to the role of prestress and the accompanying
elastic strain as conditions for structural stability.

To sum up, a generically singular con®guration of a real structural system is prestressed and
kinematically immobile (V>0, S>0, K=0). Unprestressed and, the more so, unprestressable singular
con®gurations, mobile or immobile, are nongeneric, unrealizable, and noncomputable. In what follows,
a few interesting implications of this conclusion are presented.

4. Singular con®gurations with simultaneous statical and kinematic indeterminacy

A structural system with Jacobian matrix rank r < N is underconstrained and allows virtual
displacements (it is virtually indeterminate, V > 0). For this system to have only virtual, but no ®nite,
kinematic, mobility (i.e., to have a unique geometric con®guration), it must a) be singular (r < C ),
hence, statically indeterminate (S > 0) with a comprehensive self-stress, and b) admit a sign-de®nite
combination of the S quadratic forms, as discussed earlier. Without satisfying condition b), the
con®guration is singular but the system is kinematically indeterminate (K > 0). The singularity is only
local, with V> K>0, if an adjacent con®guration is nonsingular (the rank restores to rmax=C, leading
to V = K>0 and recovered statical determinacy). If the rank does not restore, the singularity is global,
with S> 0 and V = K> 0 in any kinematically possible con®guration; such a system possesses global
simultaneous statical and kinematic indeterminacy and is a statically indeterminate ®nite mechanism.

The above conventional reasoning is to be re®ned in light of the notion of structural stability. Recall
that kinematically mobile con®gurations are unprestressable (prestressability and kinematic mobility are
mutually exclusive). This rules out structural stability, meaning that the above singular con®gurations
are nongeneric, unrealizable, and noncomputable, and so are the systems ostensibly admitting such
con®gurations.

Systems with simultaneous global statical and kinematic indeterminacy were investigated by several
authors: Tarnai (1980); Pellegrino and Calladine (1986). Perhaps, the simplest possible example of such
a system is a rigid beam with three parallel, equal length, support bars (Fig. 1a) As a result of even the
slightest geometric imperfection, the real system reverts to one of the two possible generic typesÐstress-
free invariant (Fig. 1b) or prestressed quasi-invariant (Fig. 1c). The latter requires the three support bar
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directions intersecting at one point; other than that, the geometries (Fig. 1b and Fig. 1c) of the two
alternative generic con®gurations can be very similar. In either case, the real system behaves as a ®nite
mechanism with elastic interference (Kuznetsov, 1991): very large displacements are possible at the
expense of small elastic strains. Speci®cally, these small strains are commensurate with the geometric
imperfections of the system, and the strain variations in the process of motion are the source of the
elastic interference.

Not anticipating such behavior may complicate either of the two alternative applications of this kind
of system. As a structure, it is ¯imsy, with only elastic interference, rigidity of the joints, and friction
restraining its mobility; this appears to be the case with the timber octagon of Ely cathedral (Tarnai,
1986). Usually the intended application is a mechanism. Some ingenious mechanisms (foldable structures
comprised of angulated rods joined by scissor hinges) have been discovered by You and Pellegrino
(1997); their paper also contains an extensive bibliography. However, aside from the expected (and
controllable) friction, the assembly process, initial deployment, and mechanical performance of such
systems should be strongly a�ected by their statical indeterminacy. The latter is the source of the elastic
interference caused by any departure from the nominal geometry (due to imperfect manufacturing,
thermal distortions and even elastic deformations induced by loading). Yet, many applications described
in technical publications and patents are suggested without noticing that the proposed mechanisms are
statically indeterminate, sometimes to a high degree. When evaluating the elastic interference, initial
imperfections can be accounted for in an analysis re¯ecting their random distribution, whereas the
contribution of thermal distortions and elastic deformations due to external loads can be evaluated
deterministically.

Turning to singular, hence, statically indeterminate con®gurations of kinematically mobile systems,
recall that these are structurally unstable and unrealizable. An interesting example of this kind of
nongeneric singular con®guration is a cusp mechanism of Connelly and Servatius (1994), a geometric
construct ostensibly possessing higher-order rigidity. In fact, it is a statically indeterminate, hence,
singular con®guration of a ®nite mechanism. Although infeasible in a real system, this con®guration
exhibits some remarkable theoretical features, revealing, in particular, di�culties with the introduced
de®nition of higher-order rigidity. Note that the system has been devised using symbolic (algebraic)
calculations, which obscures the fact that it is noncomputable. However, a statement following this
example in the paper appears more controversial; it reads: `the usual de®nition of N-th order rigidity
may be carried over to arbitrary systems of algebraic equations'. But higher-order rigidity for a system
of nonlinear algebraic equations is conceivable only as a nested (higher-codimension) singularity which,
at least in the context of structural frameworks, is nongeneric, hence, noncomputable. Accordingly,
numerical solutions intended to establish the order of rigidity of algebraic systems are doomed. And for
the very few algebraic systems admitting symbolic or exact solutions, the latter would still be
nongeneric.

This is a good opportunity for correcting an error by the present author in implementing Koiter's

Fig. 1. Theoretical statically indeterminate ®nite mechanism (in reality, a mechanism with elastic interference): (a) unrealizable,

nongeneric singular con®guration; (b) ordinary, invariant con®guration; (c) generic singular (prestressed quasi-invariant) con®gur-

ation with three support bar directions intersecting at one remote point.
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(Koiter, 1984) idea for constructing higher-order in®nitesimal mechanisms. The two example systems
shown in Fig. 4 and Fig. 5 of (Kuznetsov, 1999) are very similar, and so are the accompanying
explanations. The local center of curvature, O, of the path of the top bar midpoint (depicted in Fig. 4 of
(Kuznetsov, 1999)) is shown correctly in the Figure. However, in Fig. 5 of (Kuznetsov, 1999) this center
of curvature was mistakenly identi®ed with the instant center of rotation of the bar.

5. Polyhedral trusses

A classical object of statical-kinematic analysis is a general polyhedral surface, traditionally
represented by one of the two interrelated but distinct models. A continuous (surface) model is an
assembly of ¯at polygonal faces connected by rigid rectilinear (`piano') hinges at the edges. Faces are
usually idealized such that their planarity is not enforced (a rigid plate would be an exceedingly
restrictive model). The second, discrete, model is a hinge-bar assembly (a polyhedral truss) where rigid
bars (edges) are joined by spherical hinges at the vertices; polyhedral face is not an entity in this model.
The two models are identical in the case of triangulated polyhedral surfaces, since replacing bar triangles
with rigid triangular faces and introducing linear hinges along the edges does not a�ect the system
kinematics.

Rigidity (kinematic immobility) of convex polyhedral surfaces was established by Cauchy. Attempts to
improve this result met with limited success and centered on the general conjecture on rigidity of
polyhedra. Bricard (1897) discovered a kinematically mobile (in mathematical terms, ¯exible)
octahedron; it is, however, not only nonconvex, but also self-intersecting. A closer look at the hinge-bar
(truss) model of Bricard's octahedron reveals that it is a combination of two identical ®nite mechanisms
moving in accord in one common motion. A simple conceptual example of this kind of assembly
involves two identical pin-bar chains connected with vertical bars (Fig. 2). The system attributes are:
N=C=4; r=3; S =V= K =1, and the Jacobian matrix rank is not a�ected by the kinematic motion
wherein all of the bars undergo rigid-body translations and rotations. Thus, the system is singular, with
simultaneous global statical and kinematic indeterminacy. Self-stress in the system comprises a pattern
of tension forces in the upper chord, the identical pattern of compression in the bottom chord, and
tension in the two posts. The state of self-stress is con®guration-dependent, i.e., di�ers from one
con®guration to another. The system is nongeneric, structurally unstable, physically unrealizable, and
noncomputable.

Bricard's octahedron shares these quali®cations. Its truss model shown in Fig. 3 involves two identical
hinge-bar pyramids (Fig. 3a, b), with the second pyramid obtained by rotating the ®rst one 1808 about a
vertical axis. The pyramids are assembled on a common square base (Fig. 3c) but two bars in the model

Fig. 2. Kinematically mobile system comprised of two connected ®nite mechanisms moving in accord. All bars undergo rigid-body

translations and rotations.
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are intersecting. This can be avoided by slightly bending one or both of them: a rigid bent bar still
preserves the distance between its end points, hence, is kinematically identical to a straight bar. The
kinematic motions of the two pyramids are identical (Fig. 3d, e), so that, when assembled, they move in
accord (Fig. 3f). Assuming the system properly supported in three-dimensional space, its attributes are:
N= 3 � 6ÿ6=12=C; r = 11; S=V=K = 1. Self-stress exists for any con®guration of the system, and
its pattern is antisymmetric with respect to one of the vertical planes of symmetry; shown in Fig. 3c are
the self-stress forces for one half of the system in its original con®guration (the remaining forces are
obtained by sign reversal).

The surface model of Bricard's octahedron is triangulated (the base square is not a face), hence,
kinematically equivalent to the truss model. It is, however, badly self-intersecting and, because of that,
disquali®ed as a counterexample to the rigidity conjecture. For non-intersecting surfaces, the next
important result was obtained by Gluck (1975), who proved that almost all simply connected
triangulated polyhedral surfaces are rigid. (Mathematically, `almost' exempts a set of measure zero from
the original set). It is interesting to explore this result in the light of the concept of structural stability
and taking advantage of the hinge-bar (polyhedral truss) model.

Two relations characterizing simply connected polyhedra are relevant here. One is Euler's equation, V
ÿ E + F =2, relating the number of vertices, edges, and faces. The other, 2E r3F, relates the numbers
of edges and faces, with the border equality holding for triangulated polyhedra. Accordingly, the
Maxwell number, which is the number of internal degrees of freedom (those associated with the system
distortions, as opposed to its rigid motion) for a properly supported polyhedral truss is

M � 3Vÿ Eÿ 6r0 �8�
From here it follows immediately that a polyhedral truss with just one non-triangular face has M r0,

Fig. 3. Composition and kinematics of Bricard's octahedron: (a) pyramid with square base; (b) identical pyramid after 180 degree

rotation; (c) two pyramids assembled on common base; (d) and (e) identical deformations of two pyramids; (f) deformation of

assembly.
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hence, is underconstrained. As a result, almost all such trusses, speci®cally, those in ordinary
con®gurations (full-rank Jacobian) are kinematically mobile, i.e., geometrically variant. The exceptional,
rank-de®cient con®gurations are nongenerically singular, therefore unrealizable; however, if prestressed,
they become generic, quasi-variant.

By virtue of M =0, a simply connected triangulated polyhedral truss in an ordinary con®guration is
statically, virtually and kinematically determinate, hence, geometrically invariant and structurally stable.
This conclusion holds, in particular, for polyhedral trusses with triangulated coplanar panels. Thus,
almost all simply connected triangulated polyhedral trusses, as well as the underlying surfaces (due to
the model equivalence) are in®nitesimally rigid, which is the above mentioned result of Gluck (1975).

The exceptional, rank-de®cient con®gurations are singular and possess statical, virtual or, perhaps,
even kinematic indeterminacy, the latter depending on whether the singularity is local or global. Only a
local singularity can be generic and then only in the expanded state space involving elastic strains of
prestress. Since elasticity is not considered in geometric rigidity studies, generic singularity and structural
stability are ruled out. Hence, all locally and, the more so, globally singular polyhedral trusses, like
Bricard's octahedron, are nongeneric, physically unrealizable, and noncomputable.

Strictly speaking, the statement `almost all simply connected triangulated surfaces are rigid' is, as a
matter of principle, equivalent to `almost all pencils cannot stand on the sharpened end' or, closer to the
current subject, `almost all polyhedra cannot stand on one vertex upon a plane'. The latter two,
perfectly logical, statements are not intended to detract from the ®rst one, rigorous and important
mathematical statement. Physical realizability may not concern a mathematician who ®nds intellectual
challenge and aesthetic pleasure in creating exceptional out of common and discovering singular among
ordinary. In elegant words of Nobel physicist Richard Feynman, `Science is as much for intellectual
enjoyment as for practical utility'. An applied mechanician, on the other hand, is more likely to bear in
mind physical reality and, in particular, to let mathematical facts be confronted with the principle of
structural stability.

6. Polyhedral surfaces

After Gluck's (1975) advance, the ®nal verdict on the general rigidity conjecture depended on the
kinematic properties (mobility or otherwise) of the singular surfaces exempted by his theorem. The issue
was brought to an unexpected closure in 1977 by R. Connelly. His breakthrough result, elaborately
presented in Connelly (1979), shows that not all triangulated closed surfaces are rigid. In what amounts
to a geometric invention, a special construct (a `crinkle') has been introduced to eliminate self-
intersections in Bricard's octahedron without immobilizing it. The obtained simply connected,
nonconvex, triangulated polyhedral surface is a counterexample to the rigidity conjecture; it is a `¯exible
triangulated sphere'. However, like its precursor, Bricard's octahedron, it is nongenerically singular,
physically unrealizable, and noncomputable.

Continuing the foregoing analogy, the statement `not all triangulated closed surfaces are rigid' is
equivalent to `not all pencils are unable to stand on the sharpened end'. Obviously, a pencil standing on
the sharpened end is a statical possibility (it satis®es the pertinent equilibrium equation) but, because of
geometric instability, it is unrealizable. The implication for the ¯exible sphere is analogous: this exact
theoretical-geometric construct is geometrically possible (by implicitly satisfying pertinent geometric
construction rules) but, being structurally unstable, is unrealizable.

The simplest ¯exible polyhedron discovered so far has just nine vertices (Connelly, 1979). If
constructed, it must revert to one of the two possible generic typesÐstress-free invariant or prestressed
quasi-invariant. Indeed, when assembling cardboard models of this polyhedron, joining the last edge
seams has always required a noticeable e�ort (the act of prestressing!). Alternatively, the shapes of the
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faces sharing the last seams to be closed, could be adjusted for an e�ortless assembly of an invariant
(but nearly singular, hence, elastically ¯exible) polyhedron. Assembled models consistently exhibit the
expected structural behavior: they develop appreciable resistance to any displacement, revealing the
elastic resistance unavoidable in either of the two real embodiments. The described outcomes for this
theoretical system with simultaneous statical and kinematic indeterminacy can be once again traced back
to the system in Fig. 1.

Discrete hinge-bar model can be adapted for kinematic analysis of general (not triangulated)
polyhedral surfaces by incorporating continuous two-dimensional members for the face panels. In this
model a panel is represented by a very thin plate capable of resisting in-plane tension, compression and
shear, but devoid of resistance to bending. Such a panel preserves the intrinsic geometry of the face (in-
plane distances and angles), but allows out-of-plane bending and warping. In particular, non-smooth
bending in the form of creasing is allowed, but creases cannot intersect, branch or bend. [This is in
contrast with a unilateral (soft) membrane that supports only tension and allows irregular bending
(wrinkling) not preserving the intrinsic geometry of the face.] A plate panel deprives the peripheral edge
n-gon of all of its 2n ÿ n ÿ 3= n ÿ 3 in-plane degrees of freedom, whereas out-of-plane mobility of the
face is not a�ected.

Let nf ( f=1, 2,..., F ) be the number of sides in the f-th face of a simply connected polyhedron. Since
each of the E edges in the polyhedron is shared by two faces, summing up the number of sides in all
faces gives S nf=2E. Accordingly, the total number of in-plane degrees of freedom taken away by the
combined e�ect of all F face panels is

S�nf ÿ 3� � Snf ÿ 3F � 2Eÿ 3F, f � 1,2, � � � ,F: �9�
The number of internal (distortion producing) degrees of freedom for the model is obtained by

subtracting the above number from the Maxwell number of the corresponding polyhedral truss. In view
of the Euler formula, the resulting Maxwell number for the considered model is

M � 3Vÿ Eÿ 6ÿ �2Eÿ 3F � � 0: �10�
Thus, in any ordinary con®guration (full-rank Jacobian), the described discrete model of a general

polyhedron is virtually (hence, also kinematically) determinate, geometrically invariant and structurally
stable. A somewhat more general conclusion is that invariant intrinsic geometry of faces is both
necessary and su�cient for geometric invariance (in®nitesimal rigidity) of a simply connected polyhedral
surface in a non-singular con®guration.

Two remarks are in order.

1. The Maxwell number in (10) re¯ects the system kinematics but does not indicate statical determinacy.
In fact, the above panel model of a polyhedral face is statically indeterminate.

2. An inextensible, soft (wrinkling) membrane attached to the peripheral bar polygon of a face is
prestressable if the face is convex, and then it preserves the intrinsic geometry of the face. However,
this model is nongeneric unless the membrane is actually prestressed.

7. Conclusions

1. Structurally unstable (nongeneric) models are formal constructs of purely theoretical value. They are
physically unrealizable and noncomputable; their implementation would produce a generic prototype
with essentially di�erent properties and structural behavior.

2. The only real (physically and numerically realizable) types of structural system are the two ordinary
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types (geometrically invariant or variant) and their generically singular con®gurations (quasi-invariant
or quasi-variant); the latter two have prestress of ®nite magnitude and possess ®rst-order in®nitesimal
mobility.

3. Singular con®gurations of structural systems with ideal constraints are nongeneric. They become
generic for elastic systems and then are realizable by statical (but not geometric) means, speci®cally,
by prestress producing elastic strains of ®nite magnitude.

4. Unprestressed and, the more so, unprestressable singular con®gurations are nongeneric, unrealizable
and noncomputable. The case of exact or symbolic (algebraic) calculations for such models may
obscure the fact that they are just formal analytical constructs.

5. Complying with the concept of structural stability streamlines the analytical criteria for the four types
of real structural systems and leads to a simpler (second-order), yet always conclusive, statical-
kinematic analysis for real systems.

6. Simultaneous statical and kinematic indeterminacy is impossible in real structural systems. The
feasible combinations of statical-kinematic properties for (load-free) real systems are:

a) statically determinate systems are always stress-free, whereas statically indeterminate systems are
never stress-free;
b) a system can be simultaneously statically and kinematically determinate (r=N=C ), whereas the
two indeterminacies are mutually exclusive; speci®cally,
c) statically indeterminate systems are kinematically determinate (immobile) and
d) all con®gurations of kinematically indeterminate systems are statically determinate.

7. A simply connected polyhedral surface in a nonsingular con®guration is geometrically invariant
(in®nitesimally rigid) if, and only if, intrinsic geometry of the faces is preserved.

8. A real simply connected polyhedral surface is kinematically immobile: stress-free, invariant (®rst-order
rigid) in an ordinary con®guration or prestressed, quasi-invariant (second-order rigid) in a singular
con®guration.

9. Kinematically mobile (¯exible) simply connected polyhedral surfaces are nongenerically singular
geometric constructs, thus, physically and numerically unrealizable.
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